Cars, mobility, chip-to-city design and the iPhone 4

Forums IoTStack News (IoTStack) Cars, mobility, chip-to-city design and the iPhone 4

  • This topic has 1 voice and 0 replies.
Viewing 0 reply threads
  • Author
    Posts
    • #29871
      TelegramGroup IoTForIndia
      Moderator
      • Topic 2519
      • Replies 0
      • posts 2519
        @iotforindiatggroup

        #News(IoTStack) [ via IoTForIndiaGroup ]


        What’s the big deal with cars and computer chips?
        There are regular rumblings about carmakers wanting to be more involved in the development of semiconductor chips for some of the high performance compute domains in vehicles today.

        Of course, exhibit A is Tesla. Electrek’s Fred Lambert reported in late 2018 that Tesla was testing its new Autopilot Hardware 3 with employees. Fred included a snippet from an email Elon Musk sent to employees with his take on the capabilities of the new hardware:
        Sure, the benefits of SoC design are apparent, but there are plenty of automotive-grade chips available off the shelf today. Why would automakers want to get any way involved in the highly complex world of chip design, when they have more than enough on their plates already? And why did NVIDIA make the leap from being king of gaming graphics processing units (GPUs) to an industry with traditionally high barriers to entry such as automotive? And why is Tesla publicly talking about its own in-house SoC development when chip design is notoriously expensive, needs massive scale, and gets exceedingly complicated when “automotive grade” is added into the mix of requirements?

        Smartphones’ influence on automotive electronics systems

        Jump to today: iPhone XS has A12 Bionic SoC with four cores for performance, four further efficiency cores to help with power consumption, integrated graphics, some kind of on-chip security, and a neural engine for running AI and machine learning apps.

        Basically everything that Apple touts as key selling points are direct benefits from having control over the SoC used on their devices. Battery life, performance, security, image processing speeds and quality for the camera, faster Face ID — these features are all driven by A12 Bionic capabilities.

        SoC design in the auto industry

        Automotive SoCs are hugely complex to design. They need to operate at up to 150 degrees Celsius and higher (if located close to the engine, for example), and they come with reliability requirements way beyond that of the chips in a smartphone; today, SoCs likely control your vehicle’s braking system and steering, not something that can be messed around with. Automated driving sets the bar even higher.

        The future of SoC design in automotive electronics systems

        The answer is collaboration throughout the industry. The leading auto chip design houses have been working with carmakers for years on specification and design of key components, such as engine control and braking systems. The carmakers already have a degree of expertise in chip hardware and today write much of the software that runs on them. Tier 1s may own their own manufacturing facilities for semiconductors, or fabs. They may create software models for part of the chip and work with the semiconductor houses to implement on custom chips.


        Read More..

    Viewing 0 reply threads
    • You must be logged in to reply to this topic.